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A Mach-uniform unstructured staggered grid method

I. Wenneker, A. Segal and P. Wesseling∗;†

Department of Applied Mathematical Analysis; Faculty of Information Technology and Systems;
Delft University of Technology; Mekelweg 4; 2628 CD; Delft; Netherlands

SUMMARY

A novel Mach-uniform method to compute �ows using unstructured staggered grids is discussed. The
Mach-uniform method is a generalization of the pressure-correction approach for incompressible �ows,
and is valid for Mach numbers ranging from 0 (incompressible) to ¿1 (supersonic). The primary vari-
ables (�u; p and �) are updated sequentially. The grid consists of triangles. A staggered positioning of
the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the
normal momentum components are positioned at the midpoints of the faces of the triangles. Discretiza-
tion of the two-dimensional �ow equations on unstructured staggered grids is discussed. For the cell
face �uxes there is a choice between �rst-order upwind and central approximation. Flows around the
NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate
the Mach-uniform accuracy and e�ciency of the proposed method. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is well known that the e�ciency and accuracy of methods designed to compute compress-
ible �ows (Mach number M¿0:2) deteriorate drastically when M decreases below 0.2. On
the other hand, when the Mach number remains uniformly small (below 0.2), an accurate and
useful approximation is to consider the �ow as incompressible. This observation has led to
the development of computing methods exclusively suited for incompressible �ows. Neither
class of methods is suitable for computing �ows in domains in which incompressible sub-
regions as well as compressible subregions occur simultaneously, or for computing weakly
compressible �ows. For this, methods are required with accuracy and e�ciency uniform in
the Mach number. We will refer to such uni�ed methods for incompressible and compressible
�ow computation as Mach-uniform methods.
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1210 I. WENNEKER, A. SEGAL AND P. WESSELING

Basically, two strategies can be pursued when designing a Mach-uniform method. The �rst
strategy aims at improving the performance of compressible schemes in the weakly compress-
ible regime. The sti�ness problem that occurs when M ↓0 can be alleviated by modifying the
Euler equations arti�cially by multiplication of the time derivative by a matrix P−1:

P−1 @U
@t
+∇ ·F= 0 (1)

where U is the vector of primitive variables and F=F(U) is called the �ux function. This pro-
cedure is called preconditioning, and the preconditioning matrix P=P(U) should be chosen
such that the modi�ed system is less sti� than the original system. The design of P is di�cult
and remains subject of much research, see References [1–8]. Obviously, time accuracy is lost.
Restoring time accuracy is awkward and computationally expensive [8]. Instead of improving
accuracy and e�ciency of compressible codes, one can take the other way around and incor-
porate compressibility in incompressible methods. In these methods the pressure serves as a
primitive variable. Consequently, Mach-uniform formulations based on incompressible meth-
ods are pressure based. Some examples of uni�ed methods following this approach using colo-
cated grids are described in References [9–12], and uni�ed methods on structured staggered
grids are introduced in References [13–18]. Essential features in all pressure-based methods
are the presence of (i) the pressure or pressure-correction equation, which is a Poisson-like
equation yielding the new pressure, and (ii) corrections to the velocity (or momentum) in
order to ensure compliance with the continuity equation. A survey of uni�ed methods for
compressible and incompressible �ows is given in Reference [19; Chapter 14].
A common feature of (almost) all established methods for compressible gas dynamics is

the use of colocated schemes. For incompressible �ows, a straightforward discretization on
a colocated grid leads to odd–even oscillations of the pressure. To remedy this, arti�cial
stabilizing measures have to be taken. The most popular method that has evolved is the
pressure-weighted interpolation of Reference [20], by which arti�cial pressure di�usion is in-
troduced in the mass conservation law. This problem of spurious pressure oscillations does not
occur with staggered schemes. The di�culty also does not arise in the compressible case. Be-
cause on non-orthogonal grids colocated discretization is more straightforward than staggered
discretization, colocated schemes are prevalent for fully compressible �ows, and have reached
a certain degree of maturity. However, staggered schemes can be devised that are accurate
on highly non-orthogonal grids, see References [21; 22]. Furthermore, the MAC scheme, i.e.
the classic incompressible staggered scheme of [23], can be applied to compressible �ows, as
shown already in References [14; 15]. For more recent work in this direction, see References
[13; 17; 18] and references quoted there. Because an extension of an incompressible scheme
is involved, a Mach-uniform method is obtained.
The above remarks pertain to structured schemes. It has become generally recognized that

structured grid generation in complicated domains cannot be automated to a satisfactory ex-
tent. Therefore, unstructured grids are now receiving widespread attention; for interesting
surveys, see References [24; 25]. Most publications on discretization on unstructured grids
concern colocated schemes, but staggered schemes would also seem promising, especially for
incompressible �ows. The staggered incompressible scheme of Reference [23] is generalized
to unstructured grids in References [26–32]. The methods presented in these papers require
grids of Delaunay–Voronoi type. Staggered incompressible schemes on unstructured grids that
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MACH-UNIFORM UNSTRUCTURED STAGGERED GRID METHOD 1211

are not generalizations of the scheme of Reference [23] are presented in References [33–36].
In these schemes the full velocity vector is stored at cell faces or cell vertices.
The combination of an unstructured staggered scheme with a Mach-uniform method has

apparently not yet been considered; this is the aim of the present paper. Because generation of
Delaunay–Voronoi grids is not always easy, see Reference [24], we assume the triangulation to
be arbitrary. The paper is organized as follows. In Section 2 the solution procedure, including
the Mach-uniform approach, is described. We discuss the �nite-volume discretization of the
�ow equations in Section 3. Numerical results are given in Section 4, and conclusions are
gathered in Section 5.

2. SOLUTION PROCEDURE

In Section 2.1 the governing �ow equations are brie�y described. The di�culties that one
encounters with standard compressible schemes when approaching the zero Mach number
limit are discussed in Section 2.2. The Mach-uniform solution algorithm is introduced in
Section 2.3, and some additional information is given in Section 2.4.

2.1. Governing equations

The Euler equations are given by, using Cartesian tensor notation and the summation conven-
tion:

@�
@t
+ (u��); � =0 (2)

@(�E)
@t

+ (u��H); � =0 (3)

@m�

@t
+ (u�m�); � =−p;� (4)

where m�=�u� and u� are the momentum and velocity vectors, � is the density, E is the
total energy, H is the total enthalpy and p is the pressure. Furthermore, the following
thermodynamic relations hold: H = h + 1

2u
2; E= e + 1

2u
2; h= �e and �H =�E + p, with

h the enthalpy and e the internal energy, and u2 = u�u�. The system of equations is closed by
the equation of state for a perfect gas:

p=
�− 1
�

�h (5)

For the speci�c heat ratio the value �= 7
5 will be used throughout. The Mach number is

de�ned as M = u=a, with u the local �ow velocity and a=
√
(�− 1)h the local speed of

sound.

2.2. Di�culties with the zero Mach number limit

In this section, we address some di�culties that may crop up when computing weakly
compressible (M¡0:2) �ows with a standard compressible scheme.
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2.2.1. E�ciency or sti�ness problem. When using an explicit time-integration scheme, as is
often done in standard compressible methods, one needs to satisfy a stability restriction of
the following form:

�tc6C
�x
u+ a

(6)

where C is a constant of the order unity, �x the meshwidth and (u + a) the speed of the
acoustic modes. For incompressible �ows, the stability restriction is less severe:

�ti6C
�x
u

(7)

Note that �ti, if acoustic e�ects are absent, is in balance with the physical time scale. We
�nd

�tc
�ti

=
u

u+ a
=

M
1 +M

(8)

so that the numerical time step for compressible methods needs to be much smaller than
the physical time step if M�1. If no special measures are taken, this results in numerical
ine�ciency caused by the need to resolve acoustic modes, because (6) remains valid even if
there are no acoustic modes. If, instead of time marching to steady state, an iterative steady-
state solver is used, a similar convergence problem appears, since for u�(u+a) the condition
number of the Jacobian A= @F=@U is given by

�=
�max
�min

=
u+ a
u

=1+
1
M

(9)

which tends to in�nity as M approaches zero, resulting in slow convergence.

2.2.2. Accuracy problem associated with proper choice of units. Another indication of nu-
merical trouble related to the low Mach number limit reveals itself when the momentum
equation is made dimensionless. Dimensionless quantities, labelled with tildes, are de�ned
by ũ= u=ur ; p̃=p=pr , and so on, where the quantities indicated by subscripts r are refer-
ence values. With ar an estimate for the magnitude of the speed of sound, and Mr = ur=ar
being representative for the Mach number in the �ow, the dimensionless momentum equation
becomes (upon deleting tildes for brevity)

@m�

@t
+ (u�m�); �=− 1

�M 2
r
p;� (10)

We see that this equation becomes singular as Mr ↓0, which spells numerical troubles, e.g.
round-o� error di�culties, for low subsonic �ows with methods developed for compressible
�ows only.

2.2.3. Accuracy problem related to asymptotic expansion of the continuous and discrete
equations. As we saw above, the �ow equations become singular as the Mach number
tends to zero if these equations are made dimensionless in the way that is customary for
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compressible �ows. It is interesting to study the way in which solutions of the compressible
�ow equations converge to solutions satisfying the equations for incompressible �ows. To this
aim, we postulate an asymptotic expansion of the following form:

p(x; t)=p0(x; t) + �p1(x; t) + O(�2); �= �M 2
r (11)

where we remark that acoustics have been eliminated, and t represents the �ow time scale.
After introduction of similar expansions for the other dependent variables, the low Mach
number limit can be studied, as described for example in References [2; 37; 38], by inserting
these expansions in the Euler equations and equating terms with like powers of �. We get the
following results for the continuous �ow equations:

• If there is no global expansion or compression, p0(x; t)=p0 is constant in space and time,
where p0 stands for the constant background pressure level, which can be considered as
the global thermodynamic pressure part.

• The expansion leads for terms of the order � to

@m�0
@t

+ (u�0m
�
0); �=− (p1); �; m�0 =�0u

�
0 (12)

Since p1(x; t) ensures compliance with the divergence constraint on the velocity, the term
�p1(x; t) is called the incompressible �ow part of the pressure.

• In contrast to what is sometimes believed, it is the energy equation (and not the continuity
equation) from which the kinematic constraint

∇ · u0 = 0 (13)

in the limit of Mr ↓0 is derived.

In Reference [2] it is shown that solutions, obtained by means of �ux di�erence schemes,
contain pressure �uctuations of the order Mr , while the continuous pressure scales with M 2

r .
This loss of accuracy explains why �ux di�erence methods fail to compute weakly compress-
ible �ow. As Mr decreases, the solutions do not converge to a reasonable approximation of
the incompressible solution.

2.2.4. Weak pressure–density coupling. When computing low subsonic �ow, the weak
pressure–density coupling has consequences for the choice of primary variables. In incom-
pressible �ows, the density is constant along particle lines, but the pressure is not. Therefore,
for low Mach number �ow it is not a good idea to use density as a primary variable and
compute the pressure from the equation of state. In that case we would, in the limit Mr ↓0,
compute the zeroth-order pressure p0 in (11) which is not the pressure component we need.
The other way around, i.e. computation of the pressure and afterwards evaluation of the den-
sity through the equation of state or the continuity equation, does not degrade performance
for decreasing Mach numbers, and can without problem even be applied for incompressible
�ows. But standard compressible methods are density based, and consequently su�er from
weak pressure–density coupling when the Mach number is small.
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2.3. Mach-uniform solution algorithm

We discuss in this section the pressure-based conservative Mach-uniform solution algorithm
recently introduced in Reference [18]. With this Mach-uniform scheme one can compute �ow
with a Mach number ranging from the incompressible limit Mr = 0 up to supersonic �ow
Mr¿1, with nearly uniform e�ciency and accuracy. This uniformity in the Mach number
will be demonstrated in Section 4. In the incompressible limit, the Mach-uniform scheme
reduces to the standard (incompressible) pressure-correction scheme.

2.3.1. Dimensionless formulation. The pressure is non-dimensionalized as follows:

p̃=
p− pr
�ru2r

(14)

with pr a suitable reference value, to be de�ned later. This particular de�nition of the dimen-
sionless pressure is an essential feature of the present Mach-uniform formulation. The same
pressure scaling is also used in References [13; 17; 18]. The physical signi�cance of (14) can
be found when we return to (11). This shows that with the obvious alternative p̃s=p=p0 the
variation of p̃s is O(M

2
r ), so there is a risk of loss of signi�cant digits for Mr small. Note that

p̃s is the dimensionless pressure as commonly de�ned in compressible schemes. However,
substitution of (11) in (14) gives (choosing pr =p0)

p̃=
p1
pr
+ O(M 2

r ) (15)

This shows that p̃ has the nice property of being O(1) as Mr ↓0. Of course, this is already
obvious from (14), if one thinks of Bernoulli’s theorem. Furthermore, with (11) the singular
factor 1=�M 2

r disappears from the momentum equation. Non-dimensionalization as described
above leaves the continuity and momentum equation invariant. The dimensionless equation of
state yielding the enthalpy is given by, omitting from now on the tildes:

h=
1
�
(1 + �M 2

r p) (16)

When written in the form

�=
1
h
(1 + �M 2

r p) (17)

it is immediately clear that, as it should, the density becomes independent of the pressure in
the limit Mr ↓0. The dimensionless energy equation (3) can be written in the following form:

M 2
r

{
@
@t

[
p+

1
2
(�− 1)�u�u�

]
+

[
u�

(
�p+

1
2
(�− 1)�u�u�

)]
; �

}
+ u�; �=0 (18)

Remark that, as already stated in Section 2.2, it is the energy equation from which the
kinematic constraint (∇ · u)=0 is derived in the limit Mr ↓0. Equation (18) forms the basis
for the Mach-uniform pressure-correction equation, to be discussed below. Inclusion of the
di�usive terms in (18) can be done without problem, but will not be discussed in this paper.
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2.3.2. Mach-uniform pressure-correction equation. The following relation between the
momentum at time-level n+ 1 and the predictor of the momentum is postulated:

mn+1 =m∗ −�t∇�p (19)

where �t= t n+1 − t n is the time step and the pressure correction is de�ned as
�p=pn+1 − pn (20)

Inserting

m∗=�n+1u∗ (21)

where u∗ is the predictor of the velocity, and

(�u2)n+1 = (m2=�)n+1 = (m∗ −�t∇�p)2=�n+1 (22)

into (18) and discretizing in time with Euler implicit yields a non-linear equation for �p:

M 2
r

{
�p
�t
+
1
2
(�− 1) (m

∗ −�t∇�p)2=�n+1 − (mn)2=�n

�t

+ ∇ ·
[(
u∗ − �t

�n+1
∇�p

)(
�(pn + �p) +

1
2
(�− 1)(m∗ −�t∇�p)2=�n+1

)]}

+∇ ·
(
u∗ − �t

�n+1
∇�p

)
=0 (23)

For brevity, we have written m2 =m ·m. After a suitable linearization and some rearranging
we arrive at the following Mach-uniform pressure-correction equation:

M 2
r

{
�p
�t
+
1
2
(�− 1) [(m

∗)2 − 2�tm∗ · ∇�p]=�n+1 − (mn)2=�n

�t

}

+∇ ·
[
u∗

(
1 + �M 2

r (p
n + �p) +

1
2
(�− 1)M 2

r (m
∗)2=�n+1

)]

−�t∇ ·
{[(

1 + �M 2
r p

n +
1
2
(�− 1)M 2

r (m
∗)2=�n+1

)/
�n+1

]
∇�p

}
=0 (24)

For Mr ↓0, the pressure-correction equation for incompressible �ows is recovered. Furthermore,
one can prove that H =constant is, as it should, a steady solution of (24).

2.3.3. Mach-uniform sequential update procedure. De�nition of ‘left’ and ‘right’ state vectors
(containing all primitive variables) at a control volume face is the starting point for the familiar
�ux di�erence and �ux splitting schemes for the Euler equations. In iterative solution methods,
the elements of the state vector in a cell are usually updated collectively. But de�nition and
collective updates of such state vectors are not naturally given on a staggered grid; this will
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be the topic of Section 3. On the other hand, discretization by a simple �nite di�erence or
�nite-volume scheme for each primary variable separately is natural on a staggered grid. It
is also natural to update the primary variables sequentially in a time stepping or iterative
procedure. For this purpose, the implicit Euler method is used. For the primary variables we
take m; � and p. The following Mach-uniform solution algorithm is proposed:

1. Compute �n+1, the solution vector of the density at time-level n+ 1, from

R�
�n+1 − �n
�t

+D(un�n+1)=0 (25)

Here R� is a diagonal matrix containing the area of the control volumes, D corresponds
to the discrete divergence operator, and un is the solution vector of the velocity at
time-level n.

2. Compute the momentum prediction m∗ from

Rm
m∗ −mn

�t
+ C(un)m∗=−RmGpn (26)

where Rm refers to a diagonal matrix containing the area of the control volumes, C is the
discrete convection operator, G the discrete gradient operator and p the solution vector
of the pressure at time-level n.

3. The new pressure follows from the pressure-correction equation (24).
4. A correction, see (19), is added to the predictor of the momentum to obtain the mo-
mentum mn+1.

5. The new enthalpy follows from (16).

For (nearly) incompressible �ows, the density variations should remain (nearly) zero, which is
ensured by inserting the (nearly) divergence-free un in (25). When applied to incompressible
�ows with constant density, steps 1 and 5 in the Mach-uniform solution algorithm are not of
interest, and the standard pressure-correction approach for incompressible �ows is recovered.

2.4. Additional information

The linear systems are solved by means of ILU-preconditioned GMRES (steps 1 and 2 of the
above algorithm) and ILU-preconditioned Bi-CGSTAB (step 3). With wn=(wn1 ; w

n
2 ; : : :) the

solution vector of quantity w at time-level n, a stationary problem is said to have converged
su�ciently to steady state if the termination criterion

‖wn+1 − wn‖26� 1− �� ‖wn+1‖2 (27)

with a user-speci�ed relative accuracy �, is satis�ed for all primary variables. The rate of
convergence in (27) is de�ned by

�=
‖wn+1 − wn‖2
‖wn − wn−1‖2 (28)
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and ‖ · ‖2 is the standard L2-norm. This stopping criterion is based on the assumption of linear
convergence behaviour.

3. FINITE-VOLUME DISCRETIZATION

In this section, spatial discretization of the �ow equations on unstructured staggered grids
is discussed. The staggered positioning of the variables on triangular grids is introduced in
Section 3.1. As stated before, it is not possible to de�ne state vectors containing all primitive
variables. This is why schemes based on Riemann solvers cannot be applied. On the other
hand, a segregated approach is natural on a staggered grid. A �nite-volume scheme is used
for each primary variable, for which we take m; � and p. It can be shown, see Reference
[39] for a thorough discussion, that our scheme conserves mass, momentum and energy,
and this suggests, through the Lax–Wendro� theorem, that the Rankine–Hugoniot conditions
are satis�ed. As seen below, the numerical �uxes follow from simple upwind or central
approximations, and require in principle less computing than the numerical �uxes commonly
encountered in colocated schemes. Discretization of the momentum, continuity and Mach-
uniform pressure-correction equation forms the topics in Sections 3.2, 3.3 and 3.4, respectively.

3.1. Staggered grid arrangement

We will restrict ourselves to two dimensions, and consider grids consisting of triangles solely.
In Figure 1 the employed staggered placement of variables in the grid is shown. At the cell
centroids the scalar variables (e.g. p; � and h) are located. At every face e there are two
unit normal vectors ne, pointing in opposite directions. By some unambiguous procedure we
select at each face one of these to be the so-called unique normal vector Ne. The normal
momentum components m=m ·N are stored at the midpoints of the faces. This placement of
the variables is similar to the classic staggered scheme on structured grids with quadrilateral
cells as introduced by Harlow and Welch [14; 15; 23] and which is used by our group for
compressible �ows in References [13; 17; 18; 39].

: normal momentum

: scalars

Figure 1. Staggered positioning of the variables in an unstructured grid.
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6
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4
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1
j

2

k
3

5

i

Figure 2. The CV for the normal momentum component at face i is shaded. Numbers denote cells,
while faces are indicated by letters.

3.2. Discretization of the momentum equation

The �rst step in deriving a discrete equation for mi=mi ·Ni is to project the momentum
equation (4) on Ni:

@mi
@t
+∇ · [u(m ·Ni)]=−∇p ·Ni (29)

The �ux consists of a convective and pressure part, that are approximated separately. This is
also done for instance in the AUSM scheme [40], and in Jameson’s CUSP scheme [41; 42].
We integrate (29) over a suitably chosen control volume (CV). For the choice of the CV
there are various possibilities, see for example [26–31] for the choice made in the covolume
method or [32] for the choice made by Perot. We choose the union of the two triangles
adjacent to face i, see Figure 2, as CV for mi. For a boundary face at which the normal
momentum is not given, the CV consists of the corresponding boundary cell.

3.2.1. Time derivative. Integration of the time derivative over the CV in (29) is done in the
usual manner:

d
dt

∫
CV
mi dx≈�i m

n+1
i −mni
�t

where �i is the area of the CV, �t the time step and the superscript refers to the time
level.
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3.2.2. Convection term. Integration of the convection term over the CV of Figure 2 results in∫
CV

∇ · [u(m ·Ni)] dx=
∮
@CV
(u · n)(m ·Ni) d�≈

∑
e(i)
(ue ·Ne)(me ·Ni)�le (30)

where n is the outward unit normal with respect to the CV. In the last step we de�ned

�le= le(ne ·Ne) (31)

where we note that (ne ·Ne)=±1. The summation is over the faces of the CV, i.e. over the
faces in e(i)∈{k; l; o; j}. The implicit Euler scheme and Picard linearization are used, which
means that ue is evaluated at time-level n and me at time-level n+ 1; for brevity, time-level
superscripts are omitted. We further specify computation of the contribution to the convection
term of face k, i.e. the term (uk ·Nk)(mk ·Ni)�lk .
Approximation of the convecting normal velocity (uk ·Nk): At face k, the normal velocity

uk = uk ·Nk follows from

uk =
mk
�k; av

; �k; av =
�3

�1 + �3
�1 +

�1
�1 + �3

�3 (32)

Here mk is the given normal momentum component and �k; av approximates the density at face
k by means of a weighted averaging, with �1 and �3 referring to the areas of the adjacent
cells, see Figure 2. Note that if the density is constant, as is often the case for incompressible
�ows, then (32) is exact.
Approximation of the convected momentum (mk ·Ni): Assume that the �uid moves from

cell 3 to 1. We use the normal momentum components mv and mw in cell 3 to approximate
mk ·Ni. Since faces v and w are in the same triangle, the normal vectors Nv and Nw are never
parallel. As a consequence, there exists a unique solution to the reconstruction coe�cients 	v
and 	w, de�ned in

Ni= 	vNv + 	wNw (33)

Substitution gives

mk ·Ni =mk · (	vNv + 	wNw)≈	v(mv ·Nv) + 	w(mw ·Nw)
= 	vmv + 	wmw

with equality for constant momentum vector �elds. If the �uid moves from cell 1 to 3, mk

is approximated in terms of mi and mj. In the same way as before we arrive at

mk ·Ni≈mi
Summarizing, the �rst-order upwind approximation for (mk ·Ni) is

mk ·Ni=
{
	vmv + 	wmw if uk �lk¡0

mi if uk �lk¿0
(34)

The following central scheme is found to give good results in the absence of steep gradients:

mk ·Ni= 12(mi + 	vmv + 	wmw) (35)
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In the numerical examples described in this paper, only the �rst-order upwind scheme is
employed.

3.2.3. Pressure gradient. The projected pressure gradient is numerically integrated as follows:∫
CV

∇p ·Ni dx=�i(∇p ·N)i (36)

For the evaluation of (∇p ·N)i, the path-integral formulation as introduced for structured grids
in Reference [43] is used. First an approximation of the pressure gradient (∇p)i at face i is
made, after which the inner product with Ni is taken. This will result in a centred pressure
approximation, which, as we will see in the numerical experiments, rules out spurious modes.
We start with the identity

pb − pa=
∫ b

a
∇p · dx

where a and b refer to points with co-ordinates xa and xb. This expression is approximated by

pb − pa≈(∇p)ab · (xb − xa) (37)

where xab is a point in the vicinity of xa and xb, and pa=p(xa) and pb=p(xb). Application
of (37) to a path from cell-centre 1 to 2, see Figure 2, gives

p2 − p1≈(∇p)i · (x2 − x1) (38)

To determine (∇p)i one additional relation is required. The use of (37) for a path from 5 to
3 leads to

p3 − p5≈(∇p)i · (x3 − x5)
and, similarly,

p4 − p6≈(∇p)i · (x4 − x6)
We use the average of these expressions:

p3 − p6 + p4 − p5≈∇pi · (x3 − x6 + x4 − x5) (39)

Equations (38) and (39) determine (∇p)i. The stencil for the pressure gradient consists of
the six centroids depicted in Figure 2. Since for a linear pressure �eld we have equality
in (37), the approximation is exact for linear pressure �elds. Solution of system (38)–(39)
leads to

(∇p ·N)i=
6∑
j=1
�jpj (40)

With xj=(xj; yj); Ni=(Nx; Ny) and de�ning the auxiliary coe�cients

a11 = x2 − x1; a12 =y2 − y1
a21 = x3 − x6 + x4 − x5; a22 =y3 − y6 + y4 − y5
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Figure 3. The CV for the continuity and Mach-uniform pressure-correction equation is shaded.

the gradient coe�cients �j are given by

�1 =− �2 = a21Ny − a22Nx
a11a22 − a12a21

�3 = �4 =− �5 =− �6 = a11Ny − a12Nx
a11a22 − a12a21

A special situation occurs when vector (x2 − x1) is parallel to Ni. The path-integral method
then reduces to the well-known �nite di�erence approximation:

(∇p ·N)i= p2 − p1
|x2 − x1|

When one or more centroids in the stencil are absent, which occurs in the vicinity of a
boundary, the paths in (39) are truncated such as to use only existing centroids.

3.3. Discretization of the continuity equation

The triangles serve as CV for the scalar (continuity and Mach-uniform pressure correction)
equations. Integration of (2) over triangle T1, see Figure 3, is done as follows:∫

T1

@�
@t
dx+

∫
T1
∇ · (u�) dx= d

dt

∫
T1
� dx+

∮
@T1
(�u · n) d�

≈�1 �
n+1
1 − �n1
�t

+
∑
e(1)
ue�e �le=0 (41)
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with n the outward unit normal at the boundary @T1 of the control volume. The area of T1
is denoted by �1, summation takes place over the three faces in e(1)∈{i; j; k} of cell 1, and
�le is de�ned in (31). Note that we do not insert me=�eue, with me already evaluated from
the momentum equation. The reason is that we use an upwind bias in order to introduce a
measure of irreversibility, which is bene�cial for satisfying the entropy condition, see also
[11; 13; 44]. The velocity component ue is evaluated using ue=mne =�

n
e; av, see (32). The �rst

order upwind approximation for �i is

�i=

{
�1 if ui �li¿0

�2 if ui �li¡0
(42)

In the absence of steep gradients, the central scheme (not employed in the computations
described in this paper):

�i=
1
2
(�1 + �2) (43)

is found to give good results. Since an implicit Euler time-integration scheme is adopted, the
density in the convection term is taken at the new time level.

3.4. Discretization of the Mach-uniform pressure-correction equation

The Mach-uniform pressure-correction equation (24) is integrated over each triangle. The
convection term (in the second line) is evaluated in a similar way as the convection term
in the continuity equation. In the last line, the expression between square parentheses [ ] in
the Laplacian term is obtained by means of weighted averaging similar to (32). The only
aspect concerning discretization of (24) that we have not addressed yet, is the evaluation
of the terms m2 and m · ∇�p in the cell centre. This problem comes down to evaluation of
a vector v1 = (vx;1; vy;1) in the cell centre using the given normal components ve= ve ·Ne at
the three cell faces of cell 1. Since we have three knowns and two unknowns, the use of
a least-squares approach appears as an obvious choice. If the �ow �eld is smooth, we have
ve= ve ·Ne≈(v1 ·Ne) for all e(1)∈{i; j; k}. We choose v1 such that the least-squares functional

F(v1)=
∑
e(1)
[ve − (v1 ·Ne)]2 (44)

is minimal. The minimum of this functional is found there where

@F
@vx;1

=
∑
e(1)

− 2Nx; e(ve − vx;1Nx; e − vy;1Ny; e)=0

@F
@my;1

=
∑
e(1)

− 2Ny; e(ve − vx;1Nx; e − vy;1Ny; e)=0

This boils down to solving the system


∑
N 2x; e

∑
Nx; eNy; e

∑
Nx; eNy; e

∑
N 2y; e





vx;1

vy;1


 =



∑
veNx; e

∑
veNy; e
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with summation again over the three cell faces. This method is discussed in Reference [45]
for grids consisting of quadrilaterals.

4. NUMERICAL RESULTS

The di�cult issue of convergence to physically relevant weak solutions of the Euler equations,
which requires satisfaction of the Rankine–Hugoniot jump conditions and the entropy condition
(which rules out expansion shocks), for the unstructured staggered grid scheme is addressed
in Reference [39]. In that paper we demonstrated, by computing solutions on arbitrary two-
dimensional (2D) unstructured grids to Riemann problems, that our scheme converges to the
entropy solution. Note that only for the Osher scheme [46] these solutions do not contain
spurious modes, and their accuracy is similar to that of the well-established Roe and AUSM
schemes. A matter that we have not addressed in Reference [39] concerns the accuracy of
the spatial discretization. In Section 4.1, we demonstrate by means of a grid re�nement study
that the present unstructured staggered scheme has, as was to be expected, �rst-order spatial
accuracy. Four distinct types of �ow (low subsonic, subcritical, transonic and supersonic)
around an NACA 0012 airfoil are studied in Section 4.2 in order to demonstrate Mach-
uniform accuracy and e�ciency of the present scheme.

4.1. Flow in a channel with bump: grid re�nement study

Subsonic �ow in a channel with a 10% sinusoidal arc bump was chosen to show that the
spatial accuracy of our unstructured scheme is �rst order, and that the accuracy is relatively
insensitive to the shape of the triangles. The curve describing the lower wall of the domain is
chosen such that it is di�erentiable. A grid re�nement study on what we call rectangular and
general grids, to be referred to as r and g, respectively, has been performed. The boundaries
of the channel, having length 3 and height 1, are divided into 3n× n nodal points, with n an
integer. In Figure 4 the unstructured grids with n=8 are shown. Freestream �ow is taken as
initial condition. The stationary solution is computed, using a relative accuracy (see Equation
(27)) equal to 10−2, on grids with n varying from 8 to 160. The Mach number isolines of
the converged solutions obtained with the �rst-order upwind scheme on grids with n=32
are depicted in Figure 5. Note that the solutions on both unstructured grids are virtually the
same. For n→∞, the solutions become indistinguishable. The Mach number and entropy at
the lower boundary are shown, for grids of type g, in Figure 6. For inviscid and subsonic
�ow the solution should be symmetric with respect to the symmetry axis of the problem.
The asymmetry, visible in Figures 5 and 6, is due to the numerical di�usion introduced by
the �rst-order upwind scheme. This asymmetry becomes, as one observes, less with �ner
grids.
In inviscid subsonic �ows, the entropy S= ln(p=��) is a constant, so that variations in the

computed entropy can be regarded as a measure for the numerical error. This naturally leads
to the following way to quantify the error of the numerical scheme:

Eh=
∫
�
|Sh| d� (45)
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(a)

(b)

Figure 4. Example of grids of type r (a) and g (b), with n=8,
for subsonic �ow over a sinusoidal bump.

where Sh is the computed entropy along the lower boundary � at a grid with meshwidth h;
we choose h=1=n. When h is small, the error is expected to behave as

Eh=Khp (46)

where p is the order of the numerical method, and K is a constant. Plotting ln(Eh) versus
ln(h) gives, see Figure 7, for h small a slope roughly equal to p=1. Hence, the �rst-order
upwind scheme is, as was to be expected, �rst-order accurate in space.

4.2. Flows around the NACA 0012 airfoil

Flows around airfoils provide excellent test cases for CFD codes, since these �ows con-
tain much of the physics involved in aerodynamics while the problem de�nition, including
the geometry, is relatively easy. Four di�erent kinds of inviscid �ows, characterized by the
freestream Mach number Mr and angle of incidence �, around the NACA 0012 airfoil have
been considered: (i) low subsonic �ow with Mr = 0; 10−3; 10−2; 10−1 and �=0◦; (ii) subcrit-
ical �ow with Mr = 0:63 and �=2◦; (iii) transonic �ow with Mr = 0:8 and �=1:25◦, and
(iv) supersonic �ow with Mr = 1:2 and �=0◦. The accuracy of the results is discussed in
Section 4.2.1. The e�ciency of the Mach-uniform (MU) approach forms the subject of
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Figure 5. The Mach isolines of subsonic �ow over a bump, computed
on grids of type g (a) and r (b), with n=32.

Section 4.2.2. For future reference, we de�ne the Courant–Friedrichs–Lewy (CFL) number
as follows:


= max
(u+ a)�t
�x

; �x= min
i

(
�i

/
max
e(i)

le

)
(47)

where a is the local speed of sound and u the local �ow velocity. The minimal meshwidth
�x is the minimum of the ratio of the area of the triangle and the length of the corresponding
triangle’s faces. Unless stated otherwise, the grid partly depicted in Figure 8 is used. With
the leading and trailing edge of the airfoil located at co-ordinates (0; 0) and (1; 0), the left
lower and right upper co-ordinates of the rectangle de�ning the considered �ow domain
are given by (−3;−5) and (5; 5). Hence, the outer boundary is too close to the airfoil,
especially for transonic �ow, for accurate results. This grid contains 9610 cells, 14 612 faces
and 5002 vertices, of which 320 are positioned at the airfoil, and the minimal meshwidth
equals 1:0× 10−3.

4.2.1. Accuracy aspects. Low subsonic �ow: As discussed in Section 2.2, the accuracy and
e�ciency of standard compressible �ow solvers deteriorate with decreasing Mach number.
For standard solvers, sometimes the Mr = 0:1 solution of the �ow around an airfoil is even
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Figure 6. The Mach number (a) and the entropy (b) at the lower wall
for various values of n at grids of type g.

closer to the incompressible one than is the Mr = 10−3 solution, see References [2; 47]. There-
fore, �ows parameterized by Mr = 0; 10−3; 10−2; 10−1 form a good test case to study the
low Mach number behaviour of compressible schemes. The angle of attack is 0◦. We chose
�=10−2 for the relative stationary accuracy, see Equation (27). The MU algorithm reduces
to the incompressible pressure-correction algorithm when Mr = 0 is inserted, and this is con-
�rmed experimentally. The isobars of the incompressible solution are shown in Figure 9a.
The pressure �uctuations, non-dimensionalized as in Equation (14), should remain constant
for Mr small, see also expression (15). We observe in Figure 9 that this is indeed the case: the
computed isobars for Mr = 0; 10−3 and 10−2 are virtually identical, and in the Mr = 0:1 result
compressibility e�ects start to play a non-negligible role. Hence, the MU approach clearly
does not su�er from loss of accuracy in the low Mach number regime.
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Figure 7. The natural logarithm of the error Eh versus the meshwidth h, for the two types of grids
considered. The continuous line is an auxiliary line with slope 1.

Subcritical �ow around the NACA 0012 airfoil: Subcritical �ow around the NACA 0012
airfoil with a freestream Mach number of Mr = 0:63 and an angle of attack �=2◦ is computed
using a relative accuracy of 10−2. The computed isobars and Mach number at the airfoil are
illustrated in Figure 10. The computed values for the lift coe�cient, drag coe�cient and
maximum Mach number in the domain are, respectively, 0.27, 1:1× 10−2 and 0.875, whereas
the benchmark solution [48] yields 0.33, 0 and 0.99 for these quantities. The di�erences
are attributed to the fact that we use a �rst-order upwind scheme and a relatively coarse
grid.
Transonic �ow around the NACA 0012 airfoil: For computation of inviscid �ow around

an NACA 0012 airfoil with a freestream Mach number of Mr = 0:8 and an angle of attack
�=1:25◦ the grid shown in Figure 8 is too coarse to get an acceptable shock resolution, and
consequently these results are not shown here. At a �ner grid, with 80 256 cells, 12 104 faces
and 40 848 vertices, of which 1320 are located at the airfoil, we get the solution shown in
Figure 11. At the leading edge, entropy is generated and total pressure losses are incurred.
This increase in entropy causes boundary-layer-like viscous losses visible in the Mach isolines
plot, which are also present for instance in the �rst-order results in Figure 4.1a of [49]. This
numerical ‘boundary layer’ turns out to correspond to the region in which the entropy has
increased considerably. As a consequence, the shock is too weak and located too far forward
(but the Rankine–Hugoniot conditions are satis�ed). The deviation from the benchmark is quite
similar to what is generally observed with more classic �rst-order Euler solvers. In order to
get a closer approximation of the AGARD benchmark solution [50], higher-oder methods with
better conservation of total pressure are indispensable. Another cause of inaccuracy is that the
outer boundary is not far enough from the airfoil and that the outer boundary conditions
are not non-re�ecting. Nevertheless, this example shows that a staggered discretization on
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Figure 8. Part of the grid that is used to compute �ows around the NACA 0012 airfoil.

unstructured grids can resolve transonic �ows without causing spurious oscillations or other
undesirable phenomena.
Supersonic �ow around the NACA 0012 airfoil: Also for the supersonic �ow case, with

Mr = 1:2 and �=0◦, around the NACA 0012 airfoil, the grid shown in Figure 8 turns out
to be too coarse to get a good resolution of the shocks. On a grid with 31 144 cells, 46 931
faces and 15 787 vertices, of which 320 are positioned at the airfoil, that is re�ned in the
vicinity of the shocks, we get the results depicted in Figure 12. The Mach isolines are almost
identical to the ones shown in the AGARD benchmark solution [50]. In addition, the pressure
distribution at the airfoil can hardly be distinguished from the AGARD result. Furthermore,
even the result obtained at the grid of Figure 8, with 5002 vertices, turns out to yield a
very accurate pressure distribution at the airfoil. So, apparently the lack of shock resolution
does not prevent one from having a good agreement on the �ow properties at the airfoil. The
location of the sonic point upstream of the x-axis (−0:43 in our results; −0:42 in the AGARD
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Figure 9. Isobars around NACA 0012 pro�le for Mr = 0 (a),
Mr = 10−3 (b), Mr = 10−2 (c) and Mr = 10−1 (d).

solution) and the value for the drag (0.0967 in our results; 0.0960 in the AGARD solution)
are also in close correspondence with each other. This example shows that the unstructured
staggered scheme is applicable to strongly compressible �ows.

4.2.2. Mach uniform e�ciency. In addition to the accuracy problem there is, for standard �ow
solvers, the problem of e�ciency, i.e. the problem that computation time increases severely
for low Mach number �ows. In this section, we will show that the e�ciency of the MU
approach is uniform in the Mach number.
The computation time is mainly determined by the number of time steps needed to arrive

at steady state and the amount of work per time step. Steady state is reached after Nt time
steps at Tend (Tend =Nt�t), where one time unit corresponds to the time needed to travel the
distance of one chord length at freestream velocity. The relation between the Courant number
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Figure 10. Subcritical �ow around the NACA 0012 airfoil. Isobars (a)
and Mach number at the airfoil (b).

and the time step is, up to a reasonable approximation, given by (in dimensionless units):


=
(u∞ +

√
h∞=Mr)�t
�x

(48)

where the particle velocity and the acoustic speed are based on the freestream values. The
major part of work within a time step is devoted to the construction of linear systems, three
in each time step, and solving them. The total number of solver iterations in the process of
time stepping from initial to steady state is indicated by Ns, hence the average number of
solver iterations per time step equals ns=Ns=Nt . In Table I results for these various quantities
are gathered as obtained during the computations described in Section 4.2.1, on the grid
depicted in Figure 8. The time steps in this table are ‘optimal’, i.e. chosen such that the
total computation time TCPU is minimal; this is determined by means of trial and error. It
turns out that then also Ns and Nt are minimal. If the time step is chosen slightly larger than
this optimal time step, the transient behaviour becomes too strong, and numerical breakdown
occurs; hence the optimal time step corresponds to the largest possible time step for which
convergence is attained. As can be derived from the table, the fact that in the MU approach
the pressure is taken implicitly allows for large Courant numbers. It is remarkable that, if the
Courant number were de�ned as follows:


̃=
u∞�t
�x

(49)

then the largest allowable value for 
̃ remains almost constant (between 80 and 90) over
the whole range of Mach numbers Mr¿0. The omission of the term

√
h∞=Mr can be made

plausible by noting that the pressure, and hence the acoustic waves, are taken into account in
an implicit manner.
By n�; nm and np we indicate the number of iterations in the linear solver to solve, respec-

tively, the continuity, momentum and pressure-correction equation. Recall that one iteration in
Bi-CGSTAB, which is used to solve the pressure-correction equation, is more expensive than
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Figure 11. Transonic �ow around the NACA 0012 airfoil computed on a �ne grid. Isobars (a),
Mach isolines (b), Mach number (c) and entropy (d) at the airfoil.

one GMRES iteration, which is utilized to solve the density and momentum equation. The
reason why ns=Ns=Nt does not exactly satisfy ns= n�+ nm+ np, is that the values for n�; nm
and np are taken in the �nal steps of the time-marching procedure, where these values are
constant and do not show the large variations that are present in the initial stage. The values
for np; n� and nm are seen to increase for larger values of the time step, which is attributed
to the 1=�t behaviour of the main diagonal. This is demonstrated by additional experiments,
whose results are not included in Table I. In addition, for a given time step, np is seen to
decrease with increasing Mr , and this is caused by the M 2

r term in the main diagonal.
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Figure 12. Supersonic �ow around the NACA 0012 airfoil computed on a �ne grid. Mach isolines (a)
and pressure coe�cient (b) at the airfoil.

Table I. Results related to e�ciency of the airfoil computations.

Mr 0 0.1 0.63 0.8 1.2

�t (10−2) 8.0 8.0 9.0 8.0 8.2

 — 800 233 180 150
Tend 4.72 2.96 17.2 49.5 52.5
Nt 59 37 191 619 642
TCPU (s) 279 165 668 2021 1645
tCPU (s) 4.73 4.46 3.50 3.26 2.56

Ns 6431 3853 14554 40828 30834
ns 109 104 76.2 70.0 48.0
n� 3 10 12 10 4
nm 18 19 22 22 15
np 83 75 48 33 22

Clearly, Table I shows that TCPU does not blow up as Mr ↓0. This is the distinguishing
feature of our method, as compared to methods based on extension of fully compressible
methods to the weakly compressible case. In the fully compressible case the �ow takes longer
to settle down to steady state, necessitating more time steps; this e�ect would be irrelevant
for instationary �ows. The computing time per time step tCPU =TCPU=Nt depends only weakly
on Mr . We may say that the e�ciency is uniform in the Mach number.
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5. CONCLUSIONS

A Mach-uniform �nite volume scheme on unstructured staggered grids for the 2D Euler
equations has been presented. The Mach-uniform formulation is a generalization of the
pressure-correction approach for incompressible �ows, and is uniformly valid for Mach
numbers ranging from 0 up to ¿1. The approach is pressure based, the variables are up-
dated sequentially, and the scheme reverts back to the standard pressure-correction scheme
for Mr = 0. Time integration is done with the implicit Euler method, and the resulting linear
systems are solved by means of preconditioned Krylov subspace methods.
The grid consists of triangles. The scalar variables are located at the centroids of the trian-

gles, whereas the normal momentum components are stored at the face centres. The continuity
and pressure-correction equation are integrated over each triangle. For the momentum equa-
tions the control volume consists of the union of the two triangles adjacent to the face under
consideration. For the evaluation of the pressure gradient the path-integral method is adopted.
First-order upwind and central approximations for the numerical �uxes are presented, that
require fewer operations than the numerical �uxes commonly used in colocated schemes.
Numerical results of subsonic �ow in a channel with bump con�rm that the current scheme

is �rst-order accurate in space. Flows with di�erent freestream Mach number, ranging from
Mr = 0 up to Mr = 1:2, around the NACA 0012 airfoil are used to study the accuracy and
e�ciency of our schemes for incompressible and compressible �ows. The accuracy does not
degrade in the incompressible limit, and remains good even for supersonic �ows. It is found
that the Mach-uniform formulation is e�cient over the whole range of Mach numbers. This
is due to the fact that the pressure is taken implicitly, which enables the use of much larger
time steps resulting in fewer time steps before convergence is reached. Quick convergence is
obtained for Courant numbers typically in the order of a few hundred. The computing time
does not blow up as Mr ↓0, and the computing time per time step (for a given �t) depends
only weakly on Mr . We may say that the method is Mach-uniform in accuracy and e�ciency.
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